Almost Periodic Solutions and Global Attractors of Non-autonomous Navier-stokes Equations
نویسندگان
چکیده
J. Dynamics and Diff. Eqns., in press, 2004. The article is devoted to the study of non-autonomous Navier-Stokes equations. First, the authors have proved that such systems admit compact global attractors. This problem is formulated and solved in the terms of general non-autonomous dynamical systems. Second, they have obtained conditions of convergence of non-autonomous Navier-Stokes equations. Third, a criterion for the existence of almost periodic (quasi periodic,almost automorphic, recurrent, pseudo recurrent) solutions of non-autonomous Navier-Stokes equations is given. Finally, the authors have derived a global averaging principle for non-autonomous Navier-Stokes equations.
منابع مشابه
Periodic Random Attractors for Stochastic Navier-stokes Equations on Unbounded Domains
This article concerns the asymptotic behavior of solutions to the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. First we introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by comp...
متن کاملA finite number of point observations which determine a non-autonomous fluid flow
We show that a finite number of point observations serve to determine the flow field throughout the entire domain for certain two-dimensional (2D) flows. In particular, we consider the 2D Navier–Stokes equations with periodic boundary conditions and a time-dependent forcing which is analytic in space. Using the theory of non-autonomous attractors developed by Chepyzhov and Vishik, and the theor...
متن کاملThe Uniform Attractors for the Nonhomogeneous 2D Navier-Stokes Equations in Some Unbounded Domain
We consider the attractors for the two-dimensional nonautonomous Navier-Stokes equations in some unbounded domain Ω with nonhomogeneous boundary conditions. We apply the so-called uniformly ω-limit compact approach to nonhomogeneous Navier-Stokes equation as well as a method to verify it. Assuming f ∈ Lloc 0, T ;L2 Ω , which is translation compact and φ ∈ C1 b R ;H2 R1 × {±L} asymptotically alm...
متن کاملTrajectory and global attractors of the boundary value problem for motion equations of viscoelastic medium
Attractors for systems of differential equations or for dynamical systems are the sets to which the solutions of an equation or trajectories of a system are eventually attracted (after damping of transient processes). As a rule, to the condition of attraction one adds the conditions of strict invariance, minimality and compactness. The classical examples of attractors are equilibrium points or ...
متن کاملAlmost Sure Existence of Global Weak Solutions for Supercritical Navier-Stokes Equations
In this paper we show that after suitable data randomization there exists a large set of supercritical periodic initial data, in H−α(T ) for some α(d) > 0, for both twoand threedimensional Navier–Stokes equations for which global energy bounds hold. As a consequence, we obtain almost sure large data supercritical global weak solutions. We also show that in two dimensions these global weak solut...
متن کامل